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Abstract. A review is given of the application of S-function techniques to the evaluation 
of Kronecker products of irreducible representations of compact semisimple Lie groups. 
Explicit formulae are derived for all irreducible representations of all such groups. Recent 
developments involving composite Young diagrams are brought to fruition and the vexed 
problem of SOzk is dealt with completely. New branching rules for the classical groups 
are given in an appendix. These are exploited in the evaluation of Kronecker products 
by means of a technique which is applied to both classical and exceptional groups. A 
discussion is made of various modification rules which are needed to express the final 
results in standard form. 

1. Introduction 

The evaluation of Kronecker products of irreducible representations of compact 
semisimple Lie groups is one of the most frequently carried out tasks in applications 
of group theory to physics. It forms a necessary prerequisite to many calculations 
such as those involving the computation of coupling coefficients. 

Many different methods have been used to facilitate this evaluation. These methods 
fall into two main categories: those involving the explicit use of weights and Weyl 
symmetry operations, and those involving tensors, spinors and Schur function oper- 
ations. 

In the first category Weyl (1939, p231) described a method applicable to the 
evaluation of Kronecker products of all irreducible representations of each compact 
semisimple Lie group. Its use was further recommended by Racah (1964) and Speiser 
(1964), who emphasised the geometrical nature of the Weyl symmetry operations 
required for its implementation, and by Biedenharn (1963) and Baird and Biedenharn 
(1964), who stressed the algebraic aspect of these operations. This extremely effective 
technique has been assimilated into the physics literature by, amongst others, Judd 
(1963, p 133) and De Swart (1963). 

This method requires a knowledge of the weight multiplicities of just one irreducible 
representation of the pair whose product is under consideration, and incorporates a 
sum over the elements of the Weyl symmetry group. This summation can be avoided, 
as pointed out by Englefield (1981), by using the symmetry properties not only of the 
formula for the dimensions of an irreducible representation, as first advocated by 
Baird and Biedenharn (1964), but also of the formulae for the eigenvalues of Casimir 
operators. 

@ 1983 The Institute of Physics 1555 
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In contrast to this, the explicit use of weight multiplicities may be avoided through 
the use of the formula due to Steinberg (1961). This expresses the required Kronecker 
product multiplicities, that is the coefficients in the corresponding Clebsch-Gordan 
series, in terms of a partition function. The formula involves a double sum over 
elements of the Weyl symmetry group. The partition function is that introduced by 
Kostant (1959) in writing down an explicit formula for weight multiplicities. 

Such weight multiplicities may also be evaluated by means of the recurrence 
relations of Freudenthal (1954) and Racah (1964). Once the weight multiplicities are 
known, other methods of evaluating products become available such as those described 
by Rehrends et a1 (1962), Judd (1963, p 132), Straumann (1965) and Gruber (1970). 
Useful comments on these methods and their computer implementation have been 
given in the reviews of Gruber (1973) and Kolman and Beck (1973). It is not our 
intention to add any further comment other than to state that all these methods involve 
a separate calculation for each group and that these calculations, tedious even for 
low-rank semisimple Lie groups, rapidly become unwieldy with increasing rank and 
do not lend themselves to the derivation of general formulae (Barut and Raczka 1981). 

In view of this it is often easier to use an alternative method of evaluating Kronecker 
products proposed by Patera et a1 (1976). This is based on the fact that not only the 
dimension, which is just the zeroth-order Dynkin index, but also higher-order Dynkin 
indices are preserved in the decomposition of a product into its irreducible constituents. 
As pointed out by Patera (1978) this is sometimes sufficient to determine the irreduc- 
ible constituents completely, especially if supplemented with information on those 
constituents having the leading highest weights and a knowledge of the congruence 
classes of the irreducible representations. The Dynkin indices themselves may be 
evaluated from a knowledge of the weight vectors and their multiplicities. Thanks to 
the computer tabulation of the dimensions and higher-order indices by McKay and 
Patera (1981), many products may be evaluated in this way. Slansky (1981), in 
particular, has used this tabulation to determine Kronecker products of relevance to 
the unified gauge theories of elementary particles. He gives many examples for both 
the classical and the exceptional Lie groups. 

However, as with all methods of the first category a separate calculation is needed 
for each group, there is a severe limitation on the rank of the group and no general 
formulae emerge. In view of these deficiencies we focus our attention in this paper 
entirely upon the second category of methods of evaluating Kronecker products: 
namely those based on tensor and spinor manipulations in which the Schur functions 
play a pre-eminent role. In doing this the intention is to complete the programme of 
evaluating all such products using Schur functions, to gather together previous relevant 
results and to present them all in a consistent format. 

This exercise goes back to Weyl(1939, p 127) who pointed out that the decomposi- 
tion of a tensor space into irreducible subspaces can be accomplished through the use 
of Young symmetry operators having their origin in the theory of the symmetric group. 
This provides a connection between the symmetric group and the unitary group which 
is such that the characters of irreducible representations of the unitary group are 
nothing other than the symmetric functions, introduced by Schur (1901) and now 
known as Schur functions (Littlewood 1940, p84) .  It follows that the Kronecker 
product of irreducible representations of the unitary group may be evaluated by means 
of the beautiful rule of Littlewood and Richardson (1934). This provides an algorithm, 
involving Young diagrams, for the decomposition of the outer product of Schur 
functions. It is devoid of any overcounting problems, does not depend on a knowledge 
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of weight multiplicities and is essentially independent of the rank of the unitary group. 
For these reasons the Littlewood-Richardson rule for the evaluation of unitary group 
products has been absorbed into the armoury of the practising theoretical physicist 
through texts such as those of Hamermesh (1962, p 250), Judd (1963, p 136), Lichten- 
berg (1970, p 11 1) and Wybourne (1970, p 24). 

Similar Schur function methods have been developed by Newel1 (1951) and 
Littlewood (1958) for dealing with the Kronecker products of irreducible tensor 
representations of both the orthogonal and symplectic groups. Furthermore, Brauer 
and Weyl (1935) gave a complete description of the basic spin irreducible representa- 
tions of the orthogonal and rotation groups, including an analysis of their Kronecker 
products. The extension to cover the case of mixed spin-tensor or spincr irreducible 
representations was initiated by Murnaghan (1938) and Littlewood (1940). Their 
work allowed all Kronecker products of irreducible representations of the orthogonal 
and rotation groups to be evaluated (Butler and Wybourne 1969), albeit by a method 
involving a considerable amount of overcounting. More recently some of this over- 
counting has been eliminated (King et a1 1981) but at the cost of complexity in the 
resulting general formulae. 

Fortunately a number of novel generalisations of Young diagram methods have 
taken place involving composite Young diagrams. Initially this was done in a unitary 
group context (Abramsky and King 1970, King 1970) but later by Girardi et a1 
(1981a, b, 1982) who have given special attention to the orthogonal and symplectic 
groups. Their results are not always unambiguous and their formulae are rather 
complex but they did inspire some of the results reported here. At the same time 
Fischler (1981) has attempted to use Young diagram methods to evaluate Kronecker 
products of all irreducible representations of the classical groups and to extend these 
methods to the case of the exceptional groups. Unfortunately his work, which shares 
the same aim as ours, is fraught with errors and oversimplifications? even for the 
classical groups. The link between classical and exceptional groups has in addition 
been thoroughly explored in recent years (Wybourne and Bowick 1977, Wybourne 
1979, King and AI Qubanchi 1981a, b, King 1981). In particular, it has been shown 
that classical Schur function methods are more than somewhat useful in an exceptional 
group context. 

With this preamble we reiterate that our purpose here is to give a general account 
of the evaluation of Kronecker products of all irreducible representations of each 
compact semisimple Lie group using Schur function methods. The results are expressed 
as specific formulae incorporating Schur functions and Schur function series. Their 
use involves standard Schur function operations and they are free of any ambiguities. 

We first outline in § 2 the labelling schemes adopted for irreducible representations. 
They are chosen to give a natural connection with Schur functions. In the case of 
the exceptional groups the labels are chosen to be in accord with similar labels used 
for specific classical subgroups of the same rank. 

In carrying out calculations non-standard labels may arise and a conlplete set of 
the necessary modification rules are assembled in § 3. They give equivalence relations 
between a representation with a non-standard label and one with a standard label. 

The elementary properties of Schur functions are reviewed in § 4 and applied to 
the evaluation of Kronecker products for the classical groups in § 5 .  A method (King 

+ Prompted by the referee, explicit examples in support of this claim are provided in a series of footnotes 
making specific reference to the Rules 1, l a , .  . . , 5g given by Fischler (1981). 
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198 1) of exploiting known branching rules to evaluate Kronecker products is outlined 
in § 6. The relevant classical group branching rules are relegated to an appendix, but 
are used in § 7 to produce explicit formulae for Kronecker products of the irreducible 
representations of the classical groups, including the thorniest case of all, namely that 
of the rotation group, S 0 2 k ,  in an even-dimensional space. The same method is 
applied to the exceptional groups in § 8. 

Throughout the paper illustrative examples are given, but the culmination of the 
work is a set of formulae yielding algorithms suitable for the computer evaluation of 
all Kronecker products. Contemporaneously an interactive program SCHUR, written 
in Pascal, has been developed which has been used to check all the examples and the 
efficacy of the formulae derived here. 

2. Labelling irreducible representations 

Partitions of integers play a key role in labelling the irreducible representations (irreps) 
of compact semisimple Lie groups. The partition of the positive integer 1 into p integer 
parts A l , A 2  , . . . ,  A, wi thAl+A2+ . . .  A,=l a n d A l z A 2 b  . . .  b A p > O  isdenoted by 
A = ( A l ,  A 2 .  . . A p ) .  Each such partition A specifies a regular Young diagram, F A ,  
consisting of 1 boxes arranged in p left-adjusted rows. The length of the ith row is 
A i  for i = 1,2 ,  . . . , p .  The partition 1, conjugate to A ,  is defined by 1 = (xl, x2, . . . ,I,) 
where 1, is the length of the jth column of F A  for j = 1, 2, . . . , q. The corresponding 
Young diagram, F', is obtained from F A  by reflecting in the main diagonal and thus 
interchanging rows and columns. Clearly p = 11 and q = A 1. Furthermore if the length 
of the main diagonal is r, then the arm lengths, ak = A k  - k,  to the right of the diagonal, 
and the leg lengths, bk = j;k - k ,  below the diagonal, for k = 1, 2, . . . , r,  serve to specify 
the partition A in Frobenius notation (Littlewood 1940, p 60) 

For example if A = (65212) then 1 = (53231) and in Frobenius notation A = (:?), whilst 
p = 5 ,  q = 6, r = 2 and I = 15. This is made clear in figure 1. 

U 
Figure 1. 

Irreps of the unitary group, U,,, may be labelled by {A} (Littlewood 1940, p 222), 
where the partition A serves to specify the symmetry properties of the corresponding 
Zth-rank covariant tensor forming the basis of this representation. This same covariant 
tensor forms the basis of representations of the subgroups of U,,, including the 
orthogonal group 0, and, if n is even, the symplectic group Sp,. However, these 
representations are, in general, reducible, due to the existence of the symmetric and 
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antisymmetric metric tensors of 0, and Sp,, respectively. These representations may 
be reduced by extracting all possible trace terms formed by contraction with the metric 
tensors. In this way irreps of 0, and Sp, are obtained, which are conventionally 
(Littlewood 1940, pp 240, 295) labelled by [A] and ( A )  respectively. The bases are 
provided by traceless, symmetrised covariant tensors of rank I. 

In the case of U, there also exist inequivalent irreps associated with mth-rank 
contravariant tensors specified by { k } ,  and more generally irreps associated with mixed 
tensors specified by G; A}. Here the partition A specifies the symmetry of the 1 
covariant indices and the partition CL specifies the symmetry of the m contravariant 
indices. The corresponding composite Young diagram, F(”A), consists of F A  and F” 
placed back-to-back (Abramsky and King 1970, King 1970), signifying the traceless- 
ness of the mixed tensor under contraction between covariant and contravariant 
indices. It is convenient to write (0 ;  A }  = {A} and {fi  ; 0) = { f i } .  By way of illustration 
the composite Young diagram specified by ( f i ;  A )  = (3  2. 21,2  2 4  1 ) is given in figure 2: 

Figure 2. 

As well as the tensor irreps labelled by [A], 0, also has double-valued or spinor 
representations (Brauer and Weyll935) denoted by [A; A], where A is the fundamental 
spin representation of dimension 2[”’*]. The juxtaposition with A to form [A;,!] 
indicates the leading irreducible component of the Kronecker product of A and A 
(Littlewood 1950, p 256). 

For all linear groups there exists amongst the irreps a one-dimensional irrep, 
denoted by E ,  which maps each group element to the value of its determinant. By 
definition all the elements of the unimodular groups SU,, SO, and Sp, have deter- 
minant +1, so that the irreps E for these groups coincide with the identity irreps {0}, 
[O] and (0) respectively. However, for U, and 0, this is not the case. For U, E is 
the irrep (1“) with an inverse E - ’  = d = {p}. For 0, all group elements have deter- 
minant +1  or -1. Hence E - ’ = &  and E X E  =[O]. 

The product of E with any irrep is also an irrep, and inequivalent irreps related 
by some power of E are said to be associated. For U, there are an infinite number 
of inequivalent irreps associated with a given irrep, one of which will be specified by 
a partition with less than n parts. For instance . . . (6 521}, (5  41}, {&; l}, 
{E; 21}, {E; 32}, {p; 43}, {541}, (6521’). . . are all associated irreps of Us. 
More generally the Kronecker product E ‘ { f i  ; A }  = E ‘ x {fi ; A }  is an irrep of U, associ- 
ated to the irrep {F ; A }  for any real value of r. If r is not an integer then such irreps 
are strictly speaking not true irreps of U, since they are multivalued. In particular, 
if r is half an odd integer they are analogous to the spinor irreps of On, which are of 
course double valued. 

The fact that on restriction from U, to SU, E &{O} implies that all mutually 
associated irreps of U, give equivalent irreps of SU, under this restriction. Moreover 

1 2  
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each inequivalent irrep of SU, may therefore be denoted by means of a partition into 
less than n parts. 

In the case of 0, any given irrep can possess at most one inequivalent associated 
irrep. Irreps for which the character is zero for all group elements having determinant 
-1 possess an associate which is equivalent to itself. Such irreps are termed self- 
associate. For 0 2 k  all the spinor irreps and the tensor irreps labelled by partitions 
having exactly k parts are self-associate. The remaining tensor irreps of OZk and all 
irreps, spinor and tensor, of are not self-associate. Associated pairs of irreps 
are denoted (Murnaghan 1938, p 276) by [A] and [A]* = E  x [ A ]  and [A; A ]  and 
[A; A]* = E X [A; A]. 

Under the restriction from 0, to SO, the distinction between an irrep and its 
associate is lost. It might be expected that the labels [A] and [A; A ]  would suffice for 
irreps of SO,. This is not the case. Only those irreps of 0, which are not self-associate 
remain irreducible on restriction from 0, to SO,. In contrast, each self-associate 
irrep of 0 2 k  yields on restriction to s 0 2 k  two inequivalent irreps of the same dimension. 
These pairs of irreps are conveniently specified by the labels [A], and [A; A]* where 
in the former case A is necessarily a partition into k parts. 

The complete list of standard labels for all inequivalent irreps of the classical 
groups U,, SU,, O,, SO, and sp2k is given in table 1. 

Table 1. Standard labels for the irreps of classical groups of rank k .  ( A )  = ( A I ,  A2, . . . , A p )  
withA13A2a . . .  a A , > O .  ( p ) = ( p 1 , p 2  , . . . ,  p q ) w i t h p ~ l p * a . . . ~ p P > O .  A i  andpi 
are positive integers for i = 1 , 2 ,  . . . , p and j = 1 , 2 ,  . . . , q respectively. 

The irreps of the five exceptional groups G2, F4, E6, E, and Es may conveniently 
be labelled by exploiting the notation introduced to label the irreps of maximal classical 
subgroups of the same rank (Wybourne and Bowick 1977, King and Al-Qubanchi 
1981a). Many possible maximal embeddings have been considered. Here we choose 
those embeddings that lead to the greatest simplicity in evaluating Kronecker products. 
A complete specification of the corresponding standard labels for all inequivalent 
irreps of the exceptional groups is given in table 2. 

The labels introduced here serve to emphasise the tensor or spinor nature of the 
irreps. It is well known however (Cartan 1894) that each irrep of a compact semisimple 
Lie group, G, may be labelled by means of its highest weight vector. By working 
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Table 2. Standard labels for irreps of exceptional groups of rank k .  ( A )  = ( A I ,  A 2 , .  . . , A,] 
with A z A 2  z , , . 2 A, > 0. A,  is a positive integer for i = 1, 2, . . . , p .  s is a positive integer. 

Group Label AG Constraint 

with a Euclidean metric in an appropriate weight space and adopting a lexicographic 
ordering of vectors in that space, it has been demonstrated (King and Al-Qubanchi 
1981a) that natural labels AG may be introduced which are trivially related to the 
corresponding highest weight vectors. These natural labels AG are vectors in a k-  
dimensional space, where k is the rank of the semisimple Lie algebra corresponding 
to the Lie group G. 

In general the natural label AG = ( A 1 ,  A2, . . . , A k ) G  is a generalised partition in the 
sense that A I  s A 2  3 . . . S A k ,  without the restriction A k  > O  or even Ak 3 0 ,  whilst 
A I ,  A 2 , .  , . , A k  are either all integers or all half odd integers. The boldface type serves 
to distinguish a generalised partition A from an ordinary partition A .  

In tables 1 and 2, quite apart from the use of various brackets { }, [ 1, ( ) and ( 
to distinguish different groups rather than the use of the appropriate subscript G, 
some variations from the natural label notation have been introduced. The correspon- 
dence between the standard label A G  and the natural label AG is provided by the 
following identifications: 

(2 . la )  

(@; A ) = ( ~ I ,  A 2 , .  . Ap,  O , O , .  . , O ,  . , - p 2 ,  -/*I) (2. lb) 

(2.lc) 

(2 . ld)  

where each generalised partition AG has k components if k is the rank of G. For 
later convenience it is also useful to introduce the following symbols (King et a1 1981): 

(2.2a) 

(2.26) 

( A ) = ( ~ I ,  A 2 , .  . . , A p ,  0 , R .  . . , O )  

1 1 1  1 
( A ; A ) = ( A i + : , A 2 + : , .  . . , A p + t , ~ , t ,  . . . ,T) 
( s ; A ) = ( s , A ~ , A ~ , .  . I , A , , O , O , .  . . ,0 )  

(O;A)=(Ai+ l ,A2+1 , .  . . ,A,+l ,  1, 1 , .  . . , 1) 
1 1 1 ( A ;  /..i ; A )  = (A 1 +?, A 2  + 2 ,  . . . , -p2 + 5, -/* 1 + i) 

where p and q are the numbers of parts of the partitions A and I*. respectively. 

[ A I * = [ A I ,  A 2 , .  A k - 1 ,  h k ] * = [ A ~ ,  A 2 , .  3 A k - 1 ,  f h k ]  ( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

The subscripts f used in the case of irreps of s 0 2 k  are such that 

1 1 1 1 1 1 [ A ; A ] * = [ A I + ~ , A ~ + Z , .  . . , A k - i f T , h k + t ] * = [ A 1 + 5 , / \ 2 + 5 , .  . . , h k - l + $ ,  f h k f $ ]  

[U; A ] * = [ A i +  1, A 2 +  1 , .  . . , A k - 1  + 1, h k  +  AI + 1, 1 , .  . . , h k - ~ +  1, * h k  * 13 



( 2 . 3 d )  

( 2 . 3 e )  

Moreover it should be understood that for any generalised partition A 

[AI+ = [AI ,  A z , .  * 9 A k - 1 ,  = [AI, Az,  * 9 Ak-1, - A k 1 ~  

= [AI ,  Az,  . Ak-1, *Ak]+ = [AI, Az ,  - A k - 1 ,  T A k l -  

= [ A I ,  A z , .  , A k - i ,  *&I. (2 .4 )  

In addition the irreps [A]+ and [A]- are related by an involutory outer automorphism, 
t, of SOzk which is such that [A]: = [A]- for all irrep labels A .  Thus 

[AI'= [ A I  i f p < k  

[A 1: = [A IT i f p = k  

[A; A]: = [A; A], if p 5 k. 

( 2 . 5 a )  

(2 .5b)  

( 2 . 5 )  

3. Modification rules 

Having introduced, in Q 2 ,  a complete set of standard labels for all inequivalent irreps 
of each of the classical and exceptional compact semisimple Lie groups, it should be 
pointed out that, in almost any attempt to evaluate Kronecker products of irreps, 
non-standard labels may arise. 

For each of the groups G of tables 1 and 2 the label A G  of an irrep is said to be 
G-standard if and only if it coincides with one of the tabulated labels. Otherwise A G  
is said to be non-G-standard. In such a case the corresponding character may either 
vanish identically, or be equal to the character of an irrep specified by a G-standard 
label, or be the negative of such a character. In the first case the corresponding irrep 
of G is null and void and we write A G  = 0 in recognition of this. In the other two 
cases we write A G  = VG or A G  = -VG as appropriate, where VG is G-standard. Any 
negative contribution obtained in this way necessarily serves to cancel an identical 
positive contribution to the complete expression under consideration. 

An equality of characters implies an equivalence of representations and the 
equivalence relations between irreps labelled by non-standard and standard labels are 
known as modification rules. The simplest of these are those encountered in § 2 as 
a result of the identification of associated irreps on restriction from a group to a 
unimodular subgroup. Thus for Sun we have 

{A}={AI* Az,. 7 An-19 A n } = { A l - A n ,  A 2 - A n , .  . 9 A n - l - A n r  0) ( 3 . l a )  

{ C Z l = { - w n ,  - F n - I ,  * * 3 - ~ 2 9  - F 1 } = { p 1 - F n ,  p 1 - p n - 1 ,  * 9 C L ~ - / - L ~ ,  0) (3 .16 )  

{ C L ; A } = { A i , A 2 , .  -FZ,  - c L ~ I = { F ~ + A ~ , F ~ + A ~ ,  . . , ~ 1 - ~ 2 , 0 I  ( 3 . 1 ~ )  

where each vector {.  . .} has precisely n components. However, in addition to these 
modification rules there exists the well known rule: 

S u n  {A}={Ai ,  A 2 , .  . . , A p } = O  for p >n. (3 .2 )  
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This corresponds to the fact that if F A  contains columns of length greater than n then 
the associated tensors vanish identically and the irrep {A} is null and void. 

The first generalisatidn of this rule was due to Murnaghan (1938, p282)  whose 
results were considerably extended by Newel1 (1951). More recently it was realised 
(King 1971) that all the classical group modification rules could be succinctly expressed 
in terms of a common procedure. The key operation is that of the removal of a 
continuous boundary strip of boxes of length h from the Young diagram specified by 
a partition A, starting at the foot of the first column and ending in the cth column, to 
yield symbolically A - h. If the resulting Young diagram is regular, in the sense that 
the columns are non-increasing in length reading from left to right across the diagram, 
then A - h is simply the partition which serves to specify the diagram. In such a case 
the relevant sign factor is (-1)'. On the other hand, if the resulting diagram is not 
regular then it should be discarded since the corresponding character vanishes identi- 
cally. 

By way of illustration if A =(3*21) and h = 3 ,  4 or 5 then A - h  =(32),  0 or (31) 
respectively with c = 2, 2 or 3 as can be seen from figure 3. 

Figure 3. 

The modification rules appropriate to the classical groups are summarised in table 
3. For the irrep [65212] of O6 with k = 3 and p = 5 ,  for example, it is easy to see 
from table 3 that h =4.  A glance at figure 1, which illustrates the Young diagram 
F(65211), shows that a continuous boundary strip of four boxes extends from the foot 
of the first column into the second column so that c = 2 .  Its removal from F'65211' 
leaves F'65'. Hence for 0 6  [65212] = -[65]*. 

Table 3. Modification rules for the classical groups. 

U", SU" 
0 2 k + l  [A]=(-1jC-'[A -h]* h =2p-2k -1  > O  

h = 2p -2k - 1 > 0 
h =2p  -2k - 2  SO 
h =2p - 2k - 2 2 0  
h =2p  -2k - 1 > 0 
h =2p  -2k - 2  SO 

s P 2 k  ( A ) = ( - l ) ' ( A  - h )  h = 2 p  -2k - 2  2 0  
0 2 k  [ A ]  = (-l)'-'[A - h]* h =2p-2k > O  

h = 2p -2k > 0 

s o 2 k  [ A ] = ( - l ) c - ' [ A  - h ]  h =2p-2k > O  

{c ; A} = ( - l ) c + d - l { a ;  A - h }  

[A]*=(-l)'-'[A - h ]  
[ A ; A ] = ( - l ) C I A ; A - h ] *  
[ A ; A ] * = ( - l ) C I A ; A - h ]  
[ A ]  = ( - l ) C - ' [ A  - h ]  
[A; A]=(-ljCIA; A - h ]  

h = p + q - n - 1 3  0 

s o 2 k + 1  

[A]* = (-l)'-*[A - h ]  
[A;A]=(-l)c[A;A - h ]  h = 2 ~ - 2 k - 1 2 0  

[A;A]=(-l)'[A;A - h ]  h = 2 p - 2 k - 1 3 0  
[E; A]=(-1)'-'[0; A - h ]  h =2p  -2k - 2  3 0  
[A; A ] ,  =(-ljc[A; A - h ] ,  h = 2 p - 2 k - 1 3 0  
[U; A ] *  = (-1)'-'[O; A - h ] ,  h = 2p- 2k - 2 8 0  
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2 2 4  Similarly for the irrep (3 21; 2 1 } or U6, n = 6 ,  p = 6 and q = 4  so that h = 3. 
From figure 2 it is clear that the removal of continuous boundary strips of length 3 

and two columns of F'3321' so that c = 1 and d = 2. Hence for U6 (3 21; 2 1 } = 

IncontrastforUs{3 21 ,2  1 } = O s i n c e n = 5 , p = 6 a n d q = 4 s o t h a t h = 4 , a n d  
the removal of a strip of length 4 from F'3321' yields a diagram which is not regular, 
as can be seen in figure 3. 

That the modification rule for U, and SU, given in table 3 is a generalisation of 
(3.2) may be seen by applying the tabulated rule to the irrep {fi  ; A} = {n; A }  = {A}. 
In such a case h = p  - n  - 1 so that 

(2211 11) . The two strips extend over one column of F from Ftm;221111) yields F(m5;221) 
2 2 4  

2, 2 4  
{T; 2 9 ) .  

c+d-1  - 0 for h > O  i.e.p >n +1 
- A } = O  f o r h = O i . e . p = n + l  {A}=(-1) { 0 - h ; A - h } = [  I 

in agreement with (3.2). 
It should be pointed out that the application of the appropriate modification rule 

of table 3 may not, in one step, convert a non-standard label for an irrep into the 
corresponding standard label. It may be necessary to repeat the application of the 
rule. However, it is easy to see that the repeated application of the rules will lead to 
the restrictions on p and q used in listing the complete set of standard labels for 
inequivalent irreps of the classical groups in table 1. 

The modification rules of table 3 are particularly relevant to calculations carried 
out using tensor and spinor methods involving, as will be explained in 0 4, Schur 
function manipulations. In contrast to this, a further set of modification rules is needed 
to cope with certain non-standard labels arising through the use of weight space 
methods. These modification rules are a direct result of the Weyl reflection symmetry 
appropriate to weight space (King and Al-Qubanchi 1981b). The key rule of this 
type is that due originally to Murnaghan (1938, p 132) and Littlewood (1940, p 98), 
namely 

. . ,  A ~ , A ~ + l ,  . . . ,  Ak)=-(Al,A~, . . . , A ~ + l - l , A ~ + l , . . . , A k )  

for i = 1 , 2 , .  , , , k - 1. (3.3) 

It is this rule whose repeated use allows each inequivalent irrep to be labelled by an 
ordered sequence taking the form of either a partition or a generalised partition as 
in tables 1 and 2. 

This rule (3.3), although originally formulated for Schur functions in a symmetric 
group context, is applicable to the natural labels of each of the semisimple Lie groups 
for i = 2,3,  . . . , k - 1 where k is the rank of the group. The case i = 1 applies only 
to the classical groups. The remaining rules which serve to generate all possible weight 
space modification rules may be obtained from earlier work (King and Al-Qubanchi 
1981a). They are presented here in table 4. The particular rule applicable to SUktl 
and one of those applicable to each of the groups G2, Eg, E, and E8 originate in the 
combination of (3.3) and ( 3 . 1 ~ ) .  

Finally in the case of the classical groups it is convenient to make repeated use of 
these rules to derive the composite modification rules of table 5 .  The notation in this 
table leans heavily on that of table 3 and involves the formation of (h - h l ;  A + h )  
from ($ ; A )  by the removal of a continuous boundary strip of length h l  = pl + c1 - 1 
from F w  to give Flr-hl,  and the addition of a continuous boundary strip of length h 
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Table 5. Composite modification rules. 

to F A  to give FAih. This addition is the inverse of the removal procedure in the sense 
that F(A+h)-k - - F A .  

It is necessarily true that FLI-hl is regular. Indeed, in Frobenius notation, 

since h l = p l + C ; l - l = a l + b l + l .  On theotherhandF"'maynotberegu1ar. I t i s  
formed by the addition of a continuous boundary strip of length h which must start 
at its lower end in the first column and extend upwards from the (k -bl + 1)th row 
to the (k - r  + 1)th row for the groups s02k+1, SP2k and s 0 2 k .  If h is negative or if 
F A c h  is not regular then the character of the corresponding irrep is zero and the irrep 
may be discarded. The modification yields a standard label if it is repeated precisely 
s times where s is the Frobenius rank of p. 

For example, the irrep [a; 5421, of SO10 is such that k = 5 ,  p1  = 6 and = 2, 
so that h = 7, h = 5 and k - C; + 1 = 4. Hence as indicated in figure 4 

Figure 4. 

(p - h l )  = ( l ) ,  (A + h )  = (5443) and r = 3. Thus in SOlo [a; 5421, =[I; 54431-. 
Repeating the procedure, or making use of (2.3e), gives [I; 54431- = [54431]+ so 
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that the modification rules yield the equivalence relation [a; 5421, = [54431]+ for 
solo. 

There are a number of special cases for which at each stage of the modification 
procedure the crucial parameter h is 0. There are just those cases for which g i  = 
,& - 1,  Fi, or fii + 1 for i = 1,2 ,  . , . , s where s is the Frobenius rank of g. As is made 
clear in § 4, such partitions p are conventionally denoted by a, E or y respectively. 
The corresponding modification rules have been included in table 5 .  

4. Schur function operations 

Partitions are used to label various classical symmetric functions of a set of n indeter- 
minates xl, x2, . . . , x, (Macdonald 1979, p 10). Amongst these are the Schur functions 
(S-functions) sA = s,, ( x l ,  x2, . . . , x,) (Macdonald 1979, p 23) which were originally 
introduced by Schur (1901) and exploited to great effect by Littlewood (1940, p 84), 
who used the notation {A} for s,,. 

There is no need for confusion with the notation of 9 3 because the character of 
the irrep {A} of U, is nothing other than the S-function sA (Littlewood 1940, p 222). 
To be precise, the character in the irrep {A} of each element of the unitary group U, 
belonging to the class labelled by 4 = (dl, 42, . . . ,4,)  is given by 

~ ' ~ ' ( 4 )  = sA (ei'l, ei'2, . . . , e".). (4.1) 

The indeterminates of s,, are just the eigenvalues of the group element, which is just 
an n x n matrix. This allows for the identification of the irrep {A} with its character, 
namely the S-function sA which can thus be denoted by the same symbol {A}. 

This identification reduces the problem of evaluating Kronecker products of irreps 
of U, to that of decomposing products of S-functions. This can be done by means 
of the famous Littlewood-Richardson rule (Littlewood and Richardson 1934, Little- 
wood 1940, p 34, Macdonald 1979, p 68) which states that 

(4.2) 

where the coefficients mIw are the number of distinctly labelled Young diagrams F" 
obtained from F A  by the addition of the boxes of F' in accordance with the following 
procedure: 

g1 letters a, p2 letters 6, p3 letters c, . . . are added alphabetically to F A ,  one letter 
at a time in such a way that at every stage: 

(i) if the added letters are interpreted as boxes the resulting Young diagram is 
regular, 

(ii) no two identical letters appear in the same column, 
(iii) the sequence of added letters read from right to left across each row in turn 

from top to bottom is a lattice permutation, in the sense that in this sequence the 
number of letters a t the number of letters 6 2 the number of letters c t . . . at every 
stage of the sequence. 

A wealth of literature has grown up around the proof of this theorem (Robinson 
1938, Littlewood 1940, p 94, Schutzenberger 1977, Thomas 1978, Macondald 1979, 
p 68). Many examples of its application are available including a very extensive 
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tabulation due to Butler (Wybourne 1970). It suffices to give just one example here: 

B -  4 "  {12} ' (21) = 

- - E ; a + E u a  +E; + [ u  

b U U 
b 

= (32) + { 3 1 '} + {22 1) + (2 1 3}, 

with other terms such as 

b a 

excluded by the rules (i), (ii) and (iii) respectively. 
The multiplication operation (4.2) of S-functions serves to define product S- 

functions ={A a p }  = {A} * {p} .  The formula (4.2) corresponds to the mutual sym- 
metrisation of two sets of covariant indices, each of well defined symmetry specified 
by A and p, to give tensors with indices of symmetry v. 

A related operation is that of the contraction of one set of contravariant indices 
of symmetry p with a subset of a set of covariant tensor indices of symmetry v to 
yield covariant tensors with indices of symmetry A. The corresponding operation on 
S-functions is that of division, which defines (Littlewood 1940, p 110, Macdonald 
1979, p 39) skew S-functions s v / p  = { v / p }  = { v } / { p }  which may be expanded in accord- 
ance with the formula 

The coefficients are nothing other than the Littlewood-Richardson coefficients appear- 
ing in (4.2) (Stanley 1971, Lascoux 1977, Schutzenberger 1977). Thus { v / p )  is the 
sum of those {A} whose product with { p }  yields {v}. For example 

= (21) + { i3}. 

It should be pointed out that by virtue of the Littlewood-Richardson rule my, > O  
only if vi a h i  for all i. Hence interchanging the roles of A and p 

{v/cL} = 0 if pi > v i  for any i. (4.4) 

(2 1 '1/{2~} = 0. 

For example 
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The relations (4.2) and (4.3) define the two fundamental operations on S- functions 
required here: multiplication and division, signified by and / respectively. Of course 
the trivial operations of addition and subtraction are signified by + and - respectively. 
The algebra of S- functions is such that 

{A ' w l = { P  . A }  

{A * p * Y } = { ( A  - p )  

{A - (p  +.)}={A - p } + { A  * V }  

v } = { A  (p  * Y)} 

{ A / P  * v } = { A / ( p  * ~ ) ) = { ( A / p ) / v l  

{ A / F  + Y )  = {A/(+ + Y)} = { A / P }  + { A / Y } .  

S-function series play a central role in practical calculations and the following are 
particularly useful (King 1975b, King et  af 1981): 

F = c {i} 
b 

L = (-l)m{lm} 

P =e (-l)m{m} 

v = ( - l )q{G} 

X = C ( G }  

m 

m 

W 

w 

where a, E and y are partitions of a, e and c respectively which take the form 

"3 a1 a2 . . .  
a = ( u l + l  a z + l  . . .  

y = ( a l - l  az-1 . . .  a, -1  

a1 a2 . .  * a, 

a1 a2 . . .  

(4.5a) 

(4.56) 

( 4 . 5 )  

(4 .5d)  

( 4 . 5 )  

(4.5f) 

(4.92) 

(4.6) 

where r is the Frobenius rank of the partition; S is a partition all of whose parts are 
even; p is conjugate t 3  8 ;  5 is any partition; m is a one-part partition and o is a 
partition of an even number into at most two parts, the second of which is 4. The 
first few terms of each of these infinite S-function series are displayed in table 6. 

The identification of these series by means of capital letters gives a compact 
notation and leads to a concise form of symbolic manipulation. This is typified by 
the definitions 

{A 1 A }  = 1 (-1)""{A a) 
OL 
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Table 6.  S-function series. 

A = {0} - { l’} + {21’} -{3 13} - {23} + {3221} -{3222} + {414} -{42212} +{34} + . . 
B = {0} + { 1 ’} + {2’} + { 14} + {22 1 ’} + {3’} + { 16} + {24} + {321 ’} + {22 14} + {la} + . . 
C = {0} -{2} + (31) -{41’} -{3’} +{431} +{513}-{614} -{5312} -{4’2} +{43} + 
D = {0}4{2}+{22}+ {4}+{42} +{23}+{6}+{42} +{422} C{62} + { 8 }  
E = {0} - {1} + {21} - {22} - {3 l’} +{321} + {413} - {3’2} + {33} -{421’} + . . . 
F = {0} + (1) + (1’) + {2} + {3} + {21} + { 13} + {4} +{3 1) +{22} + {2 12} + {14} + . . . 
G = {0} +{1} -{21} -{22} +{312}+{321} - {413} -{332} -{33} -{4212} + . . . 
H = {0} - { 1 } + { 1 ’} + {2} - (3) - {2 1 } - { 1 3} + {4} + { 3 1) + {22} + {2 1 2} + { 14} + . . . 
L = {0} - {I} + { 12} - {13} + {14} - {1*} + { 16} - {l’} + { 1’) - {19} + { l”} + . . . 
M = {0} + {I} + {2} + {3} + {4} + {5} + {6} + (7) +{8} +{9} +{lo} + . . . 
P = {0} -{1} +{2} -{3} +{4} -{5}+{6}-{7}+{8} -{9}+{10} + . . . 
Q = {0} + { 1) + { l’} I-{ 13} + { 14} +{ 15} + { 16} + {l’} + { la} + { 19} +{ l”} + . . 
V = {0} + { 1 ’} - {2} + { 1 4} - (2 12} + {2’} + { 16} - {2 14} + {2’12} - {23} + . . . 
W = {0} +{2} -{12} +{4} -{31}+{22} +{6}-{51}+{42} -{32} + . . . 
X = {0} + { 12} + {2} + { 14} + {2 12} + {22} + { 16} + {2 14} + {2’12} + {23}. . . 
Y = {0} + (2) + { 12} + {4} + (3 1) + {22} +{6} + {Sl} + (42) + {32} + . . . 

. . . 

so that for example 

(1’ *A}={1’}-{1’ * 1*}+{1’ * 21’}- . . . 
= { 1 ’} - (2’) - (2 1 ’} - { 14} + (32 1) + (3 13} + {23} + (2’1’) + (2 14} - . . . 

{2’1/A} = (2’1) -(2’1/1’} +{2’1/21’} -{2’1/313} - . . . 
= (2’1) - (21) - { P }  + (1) 

= ( 2 1 1 ~ )  +{P/A} = (21) +{P} + 211). 

{2’1/1’ * A}={2’1/1’}-{2’1/2’}-{2’1/21’}- . . . 

It should be noted that the series (4.5) have been arranged in mutually inverse 
pairs so that 

A B  =CD =EF = GH = L M  = PQ = VW = 1 ={O} (4.7) 

where, for example, 

A B  = 1 (-1)“”((~ * p } .  
a.6 

The following identities are also satisfied: 

A L = C P = E  BM=DQ=F 

C M = A Q = G  D L = B P = H  

M P = A D = W  L Q = B C = V .  

( 4 . 8 ~ )  

(4.86) 

( 4 . 8 ~ )  
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It is also convenient to introduce Q, = (Q *L)/2 and X, = (Xk V)/2 so that 

Q- = {12m+1} 
m 

Q+ =e {12"} 
m 

(4.9a) 

Each of these series, like B, D, M and Q, contains only positive contributions: 

Q+ = ~ 0 ) + ~ 1 ~ ~ + ~ 1 ~ ~ + { 1 ~ } + { 1 ~ } + { 1 ~ ~ } + .  . . 
Q_={1}+{13}+{~5}+{17}+{19}+{111}+. . . 
x+ ={0}+{1~}+{2~}+{1~}+{2~1~}+{1~}+ .  . . 
~ - = { 2 } + { 2 1 ~ } + { 2 ~ } + { 2 1 ~ } + .  . . . 

5. Kronecker products for U., SU., Sp2&, 0, and S02k+l 

As pointed out in § 4, the Kronecker product of two covariant tensor irreps {A} and 
{+} of U, is determined by the S-function product rule (4.2) 

(5.1) 

The rule appropriate to Kronecker products of mixed tensors is more complicated, 
due to the additional constraint that the mixed tensors associated with irreps must be 
traceless under the contraction of any contravariant index with a covariant index. The 
necessary symmetrisation and extraction of traces leads to the compact formula 
(Abramsky and King 1970, King 1971) 

This result, like the special case (5.11, is n-independent, although some of the terms 
in the final expression may not be standard for a particular value of n. Such terms 
need to be modified using the rule for irreps of U, given in table 3. 

In order to avoid the apparent complexities of (5.2) it is possible to make use of 
the special irrep E to associate a covariant tensor irrep with each mixed tensor irrep 
in accordance with the identity 

which is the generalisation of ( 3 . 1 ~ )  from SU, to U,,. 
By way of example (5.2) yields the general result 

U" {i; i}x{i;  1}={2; 2)+{2; i2}+{i2; 2}+{i2; i2}+2{i; i}+{o}. 

However, the term {I2; 12} is not U3-standard. Under the modification rule for U3 
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in table 3 it is found to be zero and thus does not contribute to the result in the case 
n = 3 :  

U3 {i; i } x { i ;  1}={2; 2}+{2; i2}+{i2; 2}+2{ i ;  i}+{o}. 

The alternative method is to note that for U3, (5.3) gives {I; 1) = E{21). Hence using 
(5.1), the modification rule for U3 and (5.3) 

U3 {i; i } x { i ;  1) 

= E2{21} x {21) 

= E ’ ((42) + (4 1 ’} + { 3 ’} + 2{3 2 l} + { 3 1 ’} + { 2 ’} + {22 1 ’}) 

= F’((42) + ~{3}+{3’}  + 2 ~ { 2 1 }  + ~ ’ ( 0 ) )  

={2; 2}+{i2; 2}+{2; i 2 } + 2 { i ;  i}+{o}. 
However, this result is only valid for U3 and the method used is generally less efficient 
than the use of (5.2). Nonetheless the use of E, as in (5.3), does have certain advantages 
as will be demonstrated in dealing with Kronecker products of irreps of s 0 2 k .  

In the case of SU, Kronecker products may be evaluated through the use of (5.1) 
and the simple application of the modification rules ( 3 . 1 ~ )  and (3.2).  For example 

SU“ 

for n t 5, whilst for n = 3 

su3 

(2 1) x { 1 ’} = (3 2} + (3 1 *} + (2’ 1) + (2 1 ’} 

(2 1) x { 1 ’} = (32) + (2) + { 1 ’). 

Under the restriction from U2k to sp2k the irrep {A} is, in general, no longer 
irreducible. The reduction is well known. In terms of the S-function series of (4.5): 

U2k sp2k {A} (AlB). (5.4) 

This decomposition has a converse obtained using the series A ,  inverse to B, (King 
1975b) 

This result is very complex, involving two infinite series and leading to both positive 
and negative terms. A great simplification has been provided by Newel1 (1951) and 
Littlewood (1958) who have shown that 

This has a simple interpretation in terms of contractions with the metric tensor of 
SpZk followed by symmetrisation. It has the great merit of involving only positive 
terms. The result is k-independent but may require the use of the modification rule 
for SP2k given in table 3, for any specific value of k. 
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The use of (5.7) is exemplified by the productsl- 

sp2k (1) x(21) = (1 ’ 21)+(0  (2 + 12)) 

= (3 1) + (2*) + (2 12) + (2) + (1  2, for k 3 3  

( 12) x (2 1) = (1  2 1) + (1 (2 + 12)) + (0 ’ 1) 

+ 2(21) + ( i3)  + (1) 

= (32) +(312) +(221) +(213) +(3)  

fork 3 4  

(21) x (21) = (21 ‘ 21) +((2 + 12) * (2 + 12)) +2(1 * 1) + (0 ‘ 0) 

= (42) + (41*) + (32) + 2(321) + (3 13) + (23) 

+(22 12) + (4) + 3( 3 1) + 2(22) + 3(2 12) + ( 14) 

+2(2)+2(12)+(0) for k 3 4 .  

For values of k smaller than those indicated, non-standard irrep labels arise and these 
must be modified using the appropriate formula of table 3. For example$, in the case 
k = 2  

SP4 
As explained in 5 2 the group On has two different types of irrep: tensor and 

spinor. There are therefore three different types of product to consider: tensor-tensor, 
tensor-spinor and spinor-spinor. The tensor-tensor products can be evaluated in the 
same way as the products of irreps of SP2k. The analogues of (5.4)-(5.7) are (King 
1975b) 

U n  J- O n  0 1  1 blD1 (5.8) 

On ? U, [ A I  t WC1 (5.9) 

( 12) x (21) = (32) + (3) + (21) + (1) .  

On 
This can again be simplified (Newel1 1951, Littlewood 1958) to give§ 

On [ A ] X [ C L I = C  [ ( A / l )  * ( d 0 1 .  
i 

(5.10) 

(5.11) 

This result differs from (5.7) only in the application of the modification rules for On 
given in table 3. 

+The application of Rules 1-2f of Fischler for Sp’k gives incorrect results, for example, for each of the 
products ( l )x(21)  and ( 2 1 ) ~ ( 2 1 ) .  In the first case they give no term (2), and in the second only one term 
(2’). The origin of this discrepancy lies in the fact that the single lattice permutation rule embodied in 
Rule 2, involving both added and cancelled boxes, does not properly take the place of the three distinct 
lattice permutation rules implicit in (5.7). For example, Rule 2 excludes the term (2) in ( 1 ) ~ ( 2 1 )  which 
could be obtained via a + 1, 1 cancels, a -+ 1, 1, b + 2,l .  The only other way of obtaining a term (2) would 
be via a + 1, 1 cancels, a -+ 2,l , b + 1, 1. This also violates Rule 2 in the absence of any generalisation of 
Rule 2f to allow for the anticipation of future additions when cancelling. 
i: The application of Fischler’s Rules 1-2f to the product (12) x (21) yields the correct result for spzk provided 
that k 2 3. However, this is no longer true in the case k = 2, since Rule 2d then leads to the exclusion of 
both terms (21). This is because Rule 2d does not give properly all the modifications appropriate to Sp,, 
for small values of k .  
§The fact that (5.11) takes the same form as (5.7) corresponds to the fact that Fischler’s Rules 2-2c and 
2f apply to S02k+I and s o 2 k  as well as to sp2k. Unfortunately this means that the criticism of these Rules 
in the footnote t (above) applies not only to the case of Spzk but also to the cases of SOZk+l and s o 2 k .  
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A general method for evaluating tensor-spinor and spinor-spinor products of 
irreps of 0, has been developed (Butler and Wybourne 1969) and much simplified 
(King 1975a). Crucial to these developments is the result for the Kronecker square 
of the basic spin irrep A. This was first given by Brauer and Weyl (1935), and can 
be written in the form 

A' = [Q] = [Q*] = 'fl ([l"] + [1"]*) + [ 1'1 
m = O  

O2k 

k 

m=O 
0 2 k + l  

The series Q* and its inverse P* are defined by 

A2 =+[a*]  = 1 [1"]'*". 

Q*  = 1 {Im}'*" P* = c c-l)"{m}'*'" 
m m 

( 5 . 1 2 ~ )  

(5.126) 

(5.13) 

and use has been made of the modification rules for OZk and 02k-1 to give the final 
expressions in (5.12). 

To evaluate products involving the spinor irreps [A; A] it is necessary to know how 
such an irrep can be expressed as a product of the basic spin irrep 4 and a sum of 
tensor irreps. The appropriate relations and their inverses are given by (King 1975a, 
King er a1 1981) 

0 2 k  [A; A]=Ax[A/P]=C (-l)"AX[A/m] 
m 

Ax[A]=[A;A/Q]=~[A;A/l"] 
m 

( 5 . 1 4 ~ )  

(5.146) 

0 2 k  + 1 [A;  A] = A X [Alp*] = C A X ([A/2m] - [A/(2m + 1)]*) 

A X  [A] = [A; A/Q*] = 1 ([A; A/12"]+ [A; A/lZm+']*). 

(5 .14~)  

(5.14d) 

m 

m 

Then by simple manipulations involving the identity 

{A * I* ) / Z  = {A/Z) {cL/Zl (5.15) 

which is valid for the S- function series Z = L,  M, P, Q, V and W, the following 
Kronecker product formulae may be derived (King 1975a, King et a1 1981): 

0 2 k  [A; A I x [ c L I = ~  [A; V / f )  * (c~/fQ)l (5 .16~)  
z 

(5.166) 

(5 .16~)  

(5.16d) 

These together with (5.11) complete the required set of rules for 0,. Moreover 
(5.11), ( 5 . 1 6 ~ )  and (5.16~)  each contain only a finite number of terms. In all cases 
the summation over f is finite since f only enters as a divisor of A and p. By virtue 
of (4.4) it follows that only a finite number of non-vanishing terms may arise. Similarly 
in ( 5 . 1 6 ~ )  and (5 .16~)  only a finite number of terms in the series Q and Q *  give rise 
to non-vanishing contributions. Unfortunately (5.166) and (5.16d), like (5.12), contain 
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S-function series bounded only by the modification rules. In practice this creates a 
not insignificant overcounting problem as the 0, modification rules do not provide a 
very efficient cut-off. The situation may be improved (King et a1 1981) by performing 
various manipulations on the formulae (5.166) and (5.16d) which allow modification 
to take place at an intermediate stage. In this way fewer redundant terms are produced 
but at the cost of simplicity in the statement of the general result. 

For the group SO,, the situation regarding products is even more difficult. The 
problem lies in the reducibility of the self-associated irreps of 0, under restriction to 
SO,. There is no difficulty for 0 2 k + l  since all the irreps remain irreducible on restriction 
to S02k+l .  The equations (5.11), ( 5 . 1 6 ~ )  and (5.16d) remain valid but now the * is 
irrelevant for S 0 2 k + l  and may be deleted from the last two equations. 

Hence for example from (5.11) 

so7 [ l 3 ] X [ l 2 ] = [ l 3  * 1’]+[1’ * 1]+[1 * 01 

= [2’1] +[213] +[is] +[21] +[13]+[1] 

= [2’ 13 + [2 12] + [ 1’3 + [21] + [ 133  + [ 11 
where use has been made of the modificationst 

so7 [2i3] = [2i2]  and [ is]  = [PI. 
Similarly from (5.16c)t 

SOS [l’]x[A; l’]=[A; 1’ - l’/Q]+IA; 1 .  l /Q]+[A; 0 * O/Q] 

=[A;  l2*(1’+1+O)]+[A;1 *(l+O)]+[A;O] 

=[A; 2’+212+ 14+21  + 13+ 1 2 + 2 +  1’+ 1 +0]  

= [A; 22] + [A; 211 +[A; 21 + [A; 12] +[A; 11 +[A] 
since from the modification rules of table 3 

SOS [A; 21’1 = [A; 13] = 0 and [A; 14] = -[A; 1’3. 

Finally from (5.1649 

SOS [A; 1’1 x [A; 1’1 
=$[cl’ * 1 2 + 1  1 + 0  * 0) Q] 

= ; [ (22+212+14+2+12+0)~ ( o + 1 + i 2 + i 3 + .  . .)I 
+These modification rules are not adequately represented by Fischler’s Rules Id, 3 and 3a as can be seen 
by considering the product [ 13] x [12] in SO,. Unless Rule 3a is extended to cases for which R z  does not 
necessarily contain a column of N boxes, this Rule does not apply and no term [12] is obtained. Instead 
the application of Rule Id leads to an unwanted second term [13] via a + 1, 3 merge, 6 + 1,3 merge. 
Altering the rules leads only to difficulties with other products. 
$Instead of (5.16~) Fischler’s Rule 3c involves evaluating [A; ([A]x[p])/Q] and then reducing by 1 all 
multiplicities greater than 1. The product [ A ]  x [ p ]  is to be evaluated in SOzt-1. This procedure gives the 
correct result in some cases but fails, for example, in the case of the SOS product [ 1’1 x [A; 1’3. Amongst 
other errors Rule 3c leads to a final multiplicity of 2 for the term A in this product. This failure is once 
more attributable to the fact that Fischler’s Rules do not reproduce correctly all the necessary modifications. 
I In contrast to (5.16d) Fischler’s Rule 3d involves evaluating [{[A 1 x [p]} . IQ}] with no subsequent reduction 
of multiplicities. Once more the product [A] x [ p ]  is to be evaluated in S O Z ~ + ~  and the brackets { ,  . ,}  have 
been included to indicate that the final multiplication by Q is to be carried out as if for Uk, This attractively 
simple rule fails, for example, in the case of the SO5 product [A; l2]x[A;  1’1 since, amongst other errors, 
it yields a multiplicity 3 for the term [2’]. The modification rules are not adequately covered by this 
oversimplified Rule 3d. 
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= &(22 +212 + 14+ 2 + l2 + O  + 3 2  +2'1+ 312+2'1 

+ 2 1 3 + 2 1 3 + 1 5 + 3 + 2 1 + 2 1 + 1 3 + 1 + 3 2 + .  . .)] 

+ 2 + 0 + 3 + 2 1 + 2 1 + 1 2 + l + 3 2 + .  , .)] 

= ~ [ ( 2 2 + 2 1 + 1 + 2 + 1 2 + 0 + 3 2 + 2 2 + 3 1 + 2 2 + 2  

= [32]+[32]+[31] + [3]+ [22]+[21] +[2] +[PI +[1] +[O], 

where the modification rules appropriate to SO5 have been used to standardise the 
irrep labels and to terminate the infinite series. 

The case of S O z k  is rather different since each self-associate irrep of 0 2 k  yields 
two inequivalent irreps of SOZk in accordance with the branching rules 

OZk 1 S 0 2 k  [ A I  1 [Al=[Al++[Al- i f p = k  ( 5 . 1 7 ~ )  

(5.176) [A; A ]  1 [A; A ]  = [A; A]+  +[A; A]- f o r p s k  

where the first of these can equally well be written in the form 

[U;A] 1 [o;A]=[n;A]++[O;A]-  for p s k. ( 5 . 1 7 ~ )  

Considerable progress has been made through the use of difference characters (Mur- 
naghan 1938, pp 290, 315; Littlewood 1940, pp 246, 259) for both tensor and spinor 
representations. These difference characters are defined by 

S 0 2 k  [A]" = [A]+ -[A]- 

[A;A]"=[A;A],-[A;A]- 

[n; A]"=[n; A]+-[O; A]-  

so that 

( 5 . 1 8 ~ )  

(5.18b) 

( 5 . 1 8 ~ )  

( 5 . 1 9 ~ )  

(5.196) 

( 5 . 1 9 ~  ) 

Many results have been produced for Kronecker products of irreps of S 0 2 k  using 
difference characters in conjunction with S-function manipulations (Butler and 
Wybourne 1969, King et a1 1981). However, these are not entirely satisfactory in 
that the formulae obtained are lengthy and cumbersome. For this reason we content 
ourselves, at this stage, with the remark that difference characters are used in the 
appendix to derive branching rules appropriate to the restriction from S 0 2 k  to uk. 
These are employed later in the derivation of Kronecker product formulae for irreps 
of S 0 2 k  by means of a new technique described in Q 6.  

6 .  The branching rule method 

Given an irrep A G  of a group G, the restriction of the group elements to those of a 
subgroup H gives a representation which is, in general, reducible. The branching rule 
problem is that of determining the irreps UH of H which appear as constituents of A G  
on restriction from G to H, along with their branching multiplicities B:g. The 
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corresponding branching rule takes the form 

G L H  

In many instances this branching rule has an inverse 

A G  L C B:~uH. 
U H  

U H  t 1 A t g G  
A G  

H ? G  

1577 

(6.1) 

and the solutions to the problem of determining the coefficients in (6.1) and (6.2) are 
of great use in evaluating Kronecker products in G from a knowledge of those in H 
and indeed vice versa. 

To be explicit, if the Kronecker products of irreps of G and H are such that 

G 

and 

H 

then the Kronecker product multiplicities of G are given by 

A G  X PG = 1 K 2 & O u ~  
Y G  

(+H X T H  = 1 K;H,,PH 
P H  

KiG,,, = 1 BYgBLHA%&P”g 
U H , T H , P H  

(6.3) 

(6.4) 

with a similar formula expressing the Kronecker product multiplicities of H in terms 
of those of G. 

This technique has already been exploited in 9 5 in the derivation of (5.6) and 
(5.10) for the Kronecker product of tensor irreps of sp,k and 0, respectively. Similar 
methods using subgroups have also been used (Wybourne and Bowick 1977) to 
evaluate Kronecker products of irreps of the exceptional groups. 

In the special case for which H is the maximal toroidal subgroup, T =  
U1 x U1 x . . . x U1 of G, (6.1) takes the form 

where uT is a one-dimensional irrep {vl} X {U*} X . . . X {Uk} of T and the coefficients 
appearing in this expression are nothing other than the weight multiplicities of the 
irrep AG. The use of (6.5) in this case provides a weight space method of evaluating 
Kronecker products which may in fact be used to derive the product rule (5.1) 
appropriate to Schur functions and tensor irreps of U,. 

Such weight space techniques can be simplified thanks to the work of Racah (1964) 
and Speiser (1964) who derived the result 

where (pG + u T ) G  denotes the G-standard label V G  for the irrep of G equivalent CO 

the irrep labelled by PG + U T .  To exploit this formula it is thus necessary to make 
use of the modification rules of § 3, table 4. The only other information required is 
the set of weights uT, and their multiplicities, for just one of the irreps AG of the 
product AG x p G .  Alternatively the use of modification rules may, in this case, be 
avoided by means of a technique due to Englefield (1981) involving the dimensions 
of irreps and the eigenvalues of a set of Casimir operators. 
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More recently a new technique for evaluating Kronecker products has been devised 
(King 1981). It is a generalisation of (6.7) with T replaced by a subgroup H of G 
which has the same rank as G and which is embedded naturally in G. The derivation 
leans heavily on the work of Racah (1964) and Speiser (1964) and yields the formula 

G AG X P G  = 1 B;roKzz.rG+sG-sH @ H  - 6 ~  + ~ H ) G  (6.8) 

where SG and SH are equal to half the sums of the positive roots of G and H respectively 
(King and AI-Qubanchi 1981a). 

To use this result it is necessary to identify a suitable subgroup H of G and to 
know four things about these groups: firstly the branching rule for the restriction from 
G to H in the case of the irrep A G ;  secondly, 6~ -6H; thirdly, the Kronecker product 
multiplicities of H, since it is these multiplicities which appear in (6.8); and finally, 
the modification rules appropriate to G, in order to convert @H - 6 G  + S H )  to G- 
standard form. 

For reasons of simplicity in evaluating Kronecker products in H it is convenient 
to choose H to be a unitary group of the same rank as G. Suitable groupsubgroup 
combinations are given in table 7, together with SG -6H, which may be obtained from 
earlier work (King and AI-Qubanchi 1981a). The striking thing about this tabulation 
is that 6c - s H  is null for S02k whilst for SOZk+l and Sp2k it is of the form E 1’2 and 
E respectively, where E is the weight vector of the irrep {Ik} of Uk used to relate 
associated irreps of this group as explained in § 2.  Thus the addition and subtraction 
of SG -6, in (6.8) is a null operation in all these cases. We may write for G = SOZk+l,  
SP2k, S O z k  and H = u k  the simpler formula 

~ H . P H  

where the final subscript, G, is used as in (6.7) and (6.8) to indicate the need to convert 
p H  to G-standard form. The implementation of this result is described in Q 7. 

Table 7. Relationship between G and a unitary subgroup H of the same rank. 

G H SG -6, 

S02kcl uk (at . . .  5 )  (0 0 . . .  0 )  
sP2k uk (1 1 . . .  1) (0 0 . . .  0) 
S02k uk (0 0 . . .  0) (0 0 . . .  0) 
G2 su3 (1 0) (1, 0) 
F4 U4 
E6 su2 x SU6 (10,00000) (10, 00000) 
E7 sus (10,000000) (10,000000) 
E8 SU9 (21, 0000000) (21,0000000) 

(2,000) (f f ;, 

In the case of the exceptional groups the situation is more complicated. For Gz, 
E6, E7 and E8 it is to be noted that 6~ -SH has a single non-vanishing component; 
namely the first component d which takes on the values 1,  10, 10 and 21 respectively. 
The most troublesome case seems to be that of F4. However for G = F4 and H = U4 
we can write SG - S H  = (;t i;)  = ($33;) + (2000) where ($333) is nothing other than E ’” 
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once again. As in the case of the classical groups, the addition and subtraction of 
E ' I 2  may be omitted. 

It follows that in all cases 

(6.10) 

where 6 = (d, 0, 0, . . . , 0) is defined in table 7.  The application of this formula to the 
exceptional groups is discussed in § 8. 

7. Kronecker products for S O Z ~  Spzk and S O Z ~ + I  

In order to exploit the method of § 6, as summarised for the classical groups in (6.9), 
it is necessary to know the relevant branching rules. For S O 2 k  4 Uk these are given 
in the appendix, the required results being (A4), (A12) and (A18). It is then a simple 
matter to write down Kronecker product formulae for all irreps of SOzk : 

( 7 . 1 ~ )  

(7 . lb )  

( 7 . 1 ~ )  

[A; A l + X [ p l + = ~ [ ~ ' / ~  * {6 Q,; ( A / @ ) ) . { p ) l +  (7.ld) 

[A; AI*x[A; P I + = C  [{C; (A/@) * Q * ( - i k }  * {CL)]+ (7.le) 

(7.lf) 

[U; A ] * X [ c l ] +  [ E  * (5  * X*; (A/@?)).  {CL)]+ (7.lg) 

[a; A], x [A; p], =I [ E ~ "  * {[ * X*; (A/@?)) . {p)]+ (7.lh) 

[U; A I *  x [U; Fl+ = c [{& ( A / @ )  * X*C-,kl * {pIl+ (7.li) 

e 

5 

[A; A ] +  X [O; p]+=C [E '" {C; ( A / @ )  * Q * ( - ) k I  * {FII+ 
5 

6 

5 

5 

where [CL]+ = [p] if the number of non-vanishing parts of p is less than k. 
All possible cases are covered by the use of the involutory outer automorphism, 

f ,  of S 0 2 k  whose action is defined by (2.5). Because of the commutative nature of 
Kronecker products there is some choice available in this set of formulae. They 
require for their implementation the evaluation and modification of products in Uk, 
with a final modification in SOZk.  Division by the series B for fixed A only involves 
a finite number of terms as does the summation over 6. The modification rules of uk 
are used to terminate the series 0, and X,, thus providing a more effective cut-off 
than do those of 0, in (5.16b) and (5.16d). 

It is instructive to consider a few examples: firstly the use of ( 7 . 1 ~ )  in evaluating 
[21]X[213], for SOs. The first step is to evaluate Xe {E (21/58)) which may be done 
from first principles or by using Butler's tabulation of S- function products and quotients 
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(Wybourne 1970). We obtain 

c 15; (21/5B)} 
5 

= { b ;  2 1 / ~ } + { i ;  2 / ~ } + { i ;  I’/B)+{Z; i /B}+{i2;  1 /~)+{21;  O / B )  

= { b ;  21)+{b; i}+{i; 2}+{i; i2}+{i; o}+{z; i}+{i2; i } + { Z ;  01. 
Each term must now be multiplied by {213) = ~ { l }  in U4, giving 

(421’) +{4i2) + {3’i2) + {32*1} + 2{321} + 2{3i3) + {i ; 3i2} + (3 1) + p 3 }  

+ 2{2’i2} + {i; 2’1) +{27 + 3{21’} + { i ;  21}+ {i4}+ {i; i3) + {i2}. 

Each term of this sum is U4-standard but must be made SOs-standard either using 
the appropriate modification rule for SOs given in table 5 or, more simply, using (2.4). 
Hence 

SOS [211 x ~ 2 1 ~ 1 ,  
= [4212],+[412]+[3212]++[3221]1+2[32~]+2[313], 

+ [313]- +[31]+[23]+2[2212]+ + [221’]-+[22] 

-k 3[2 1’1 + [ 14]+ + [ 141- + [ 1’1. (7.2) 

As a second example consider [A; 11- x [2’1]+ in SO6 evaluated by means of (7 . ld)  
The terms in [21] x [213]- then follow by applying (2.5) to both sides. 

with k = 3. Noting ( 4 . 9 ~  1, we first calculate 

(5 * lZmi1; 1/@} 
5. m 

= ( 5 .  lZm+*; 1/5}=C {FT; 1 ) + C  { l Z m + * .  1; 0 )  

={i; i)+{i’; o}+{Z; o}t-{212; 01 
where U3 modification has cut off the series. This sum must now be multiplied by 
{221) = e{12} in u3, giving 

{32}+{312}+{221} +{i; 2’) + 2{21) +(i3}+{i; i2}+{i}. 

Interpreting the factor 
to be S06-standard gives the result 

SO6 [A;  11- x [2’1]+ 

from (7. ld)  as A and subsequently modifying the terms 

= [A; 321, i [A;  312]+ +[A; 221]+ +[A; 2’3- + 2[A; 211, 

+[A; 13]+ +[A; 1’1- +[A; l]+. (7.3) 

Again [A; 11, x [2’1]- may be found by applying (2.5) to both sides. 

t The inadequacy of Fischler’s Rules in such a case is made clear by the fact that in the SO6 product 
[2*1]- x [A; 11- treated by means of Rule 5c the term [A; 211, arises twice: once each from the distinct 
intermediate representations [A; 3211, and [A; 21’1,. Rule 5d then necessitates discardingone term [A; 211, 
in conflict with the correct result which gives a multiplicity of 2 for this term. 
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It is possible to rewrite some of the results (7 .1)  in a form more akin to ( 5 . 1 1 )  by 

(7 .4)  

based on (5 .2)  and the link between products and quotients defined by (4 .2)  and (4 .3) .  
This result (7 .4)  then yields in conjunction with (7 .1)  

making use of the formula 

c rr; v / 5 )  * {CLI = c in; @/5) (CL/l)l= c {ii ; b / l T )  ' (CL/l)l 
E 5, b m i  

( 7 . 5 2 )  

(7 .5b)  

[ U ; A I * X [ ~ ; C L I + = C  [ f l ;  ( A / ~ T B )  (CL/() .X+(-ikI+. ( 7 . 5 f )  
m i  

Once again all possible cases are covered by the commutativity of Kronecker products 
and the use of the involutory outer automorphism, t ,  of S 0 2 k  defined by (2 .5) .  These 
results involve merely S-function products and quotients but the results must, as 
before, be modified in uk and then SOZk. 

In a similar way the branching rules (AI)  and ( A 2 )  for S O Z k i l  uk yield the 
formulae 

S02k+l ( 7 . 6 ~ )  

(7 .66)  

( 7 . 6 ~ )  

[A 1 X [ P I  = c [{& A / m  * {CL11 
E 

1 /2  - 
[ A I  x [A; CL1 = c [ E  ( 5 ;  A / F I  * {CL11 

5 

[A; Alx[A; PI=C [{E (A/5F) * Q) - {P I ]  
e 

which may be written, thanks to (7.4),  in the form 

(7 .76)  

(7 .7c)  

(7 .9)  
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The results (7.9), (7.7a), (7.7b) and (7 .7~)  should be compared with the results 
(5.7), (5.11), (5 .16~)  and (5.16d) respectively. Of these there is no doubt that (5.7), 
(5.11) and (5.16~)  are the simplest, whilst ( 7 . 7 ~ )  or its precursor (7.6c), has some 
advantage over (5.16d) because the cut-off in the series Q is reached more quickly 
in uk than in so2k+1. 

The final formulae of this section, (7.3,  (7.7) and (7.9), have been expressed in 
such a way that the application of the modification rules of SOZk, S02k+l and SpZk, 
respectively, involve in each case the conversion of either ( i j  ; v )  or (A; i j  ; v )  to standard 
form. This may be done in accordance with the rules of table 5 .  These are such that 
if k is large compared with the number of parts of v the only non-vanishing contribu- 
tions will be those for which h = 0. These special cases are explicitly displayed in table 
5 ,  from which it can be seen that the modification of (7.7~1, (7.7b) and (7.9) is effected 
by dropping the summation over 77, deleting fj and replacing 7 by E, C and C 
respectively. The use of the identities (4.9) then immediately leads back to the results 
(5.11), (5 .16~)  and (5.7). 

This simplification cannot be applied to ( 7 . 7 ~ )  because the infinite series Q leads 
to terms for which k is not large compared with the number of parts of the relevant 
partition v for any finite k .  

Similarly ( 7 . 5 ~ )  may be modified in the same way replacing 77 by A and using 
(4.9) to recover (5.11). However, this is only true for k large compared with the 
number of parts of A and k,  so that the subscripts f are irrelevant and may be dropped. 
Unfortunately none of the other formulae of (7.5) may be simplified. Progress is 
frustrated by either the presence of the infinite series 0, and X, or the sign changes 
*+ T contained in the rules of table 5 appropriate to S 0 2 k ,  or both! Thus (7.1) or 
(7.5) remains the last word for Kronecker products of irreps of S02k. 

A final summary of the best results for each of the classical groups is given in 
table 8. 

It should be pointed out that the results arrived at in this section are related to 
but distinct from those of Girardi et al (1981a, b). The derivation of their remarkable 
results is quite different and involves yet another method of avoiding over-counting 
by eliminating unwanted terms by means of a modification procedure. This depends 
upon making a careful distinction between ‘allowed’ and ‘non-allowed’ terms. Once 
again the infinite S-function series (4.5) appear in the final formulae. Moreover, the 
special cases of modification rules given in table 5 govern the formation of these 
formulae. 

8. Kronecker products for the exceptional groups 

The final task is the application of the branching rule method to the eva!uation of 
Kronecker products of irreps of the exceptional groups through the use of (6.10). It 
was precisely this application which motivated the original development of this tech- 
nique (King 1981). Its worth depends upon the extent to which the required branching 
rules are known. 

Fortunately extensive tables are available (King and Al-Qubanchi 1978, Wybourne 
and Bowick 1977, Wybourne 1979, McKay and Patera 1981). These should be 
adequate for the forseeable future, particularly as the branching rule is only required 
in (6.10) for one of the irreps of the exceptional group G. Of course for the simplest 
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Table 8. Kronecker products for the classical groups 

s P 2 k  

0 2  k 

case the branching rule is completely known; that is the case of GZ 4 SU3 (Fronsdal 
1962, King and Al-Qubanchi 1978). 

The implementation of (6.10) involves a three-stage algorithm. Stage 1 provides 
the branching of A G  to  give uH along with the branching multiplicities. Stage 2 involves 
the addition of 6 to p~ and the evaluation of the product (+H x ( p ~  +S) of irreps of 
H to give pH in H-standard form. Stage 3 gives the final result through the subtraction 
of 6 from p H  and the subsequent G-standardisation of (pH - 6 ) G .  

For example, in the case of the product (21) x (21) in GZ the first stage gives 

G2 4 SU3 (21) .1 {21}+{1}+{12}, (8.1) 
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The second stage yields, with the addition of 6 = (lo), 

sus ({21}+{1}+{1’}) x (31) 

= (52) +{43} +{42} +{41} +{4} +{32} + 2{3 l} 

+{3} +{2’} +{21} +{2} +{l}. 

Subtraction of S = (10) gives 

GZ (42)+(3’ )+(32)+(31)+(3)+(2’ )+2(21)+(2)  

+ (12) + ( 12) + (1) + (0). 

Under the modification rules of Gz: 

(3’) = -(31) (32) = 0 (27  = 4 2 1 )  (12) = -(1) (1’)=0 (8.3) 

so that the final stage gives the result 

Gz (21) x (21) = (42) + (3) + (21) + (2) + (0) (8.4) 

in agreement with the tabulated result due to Butler (Wybourne 1970) if due account 
is taken of the difference in notation: the irrep ( A l ,  A’) is denoted by ( A l  - A 2 ,  A’) in 
Butler’s tabulation. 

Unfortunately, in this example and in many others, the addition of S in stage 2 and 
its subtraction in stage 3 are essential steps. An incorrect result is obtained if S is 
omitted altogether. This is in contrast to the classical group case. 

The group F4 has been discussed elsewhere (King 1981) using the branching rule 
for F4 .1 SO9 (Wybourne and Bowick 1977, McKay and Patera 1981). There is no 
difficulty in combining this branching with that for SO9 & U4 given in the appendix: 
(A l )  and (A2). In both cases, using SO9 or U4, S = (2000) and 6 may not be omitted. 

The group E6 is slightly easier to cope with since it is possible to take advantage 
of the semisimple nature of the subgroup SU2 x SUS and the trivial products in SU2 
to show that in this case S can be reduced in evaluating the product (s : A )  x ( t  : p )  to 

(000000) i f s - t c 0  

(10,00000) 
if O < s  - t s 10 
if s - t > 10. 

By suitably ordering any pair of irreps (s : A )  and ( t  : p )  it is clearly possible to omit 
S in evaluating their product. 

By way of illustration consider the product (2 : 1’) X (2 : 0) in E6. On restriction 
(Wybourne and Bowick 1977) stage 1 gives 

Eg 4 SUz X SUS (2 :o)  4 {2}{0}+{1}{i3}+{0}{214}. 

Stage 2 yields 

SUZ x sus (12}{0}+{l}{1~}+{0}{21~})({2}{1~}) 

= {4}{ 1 ’} + {3}( (2’ 1) + (2 1 ’} + { 1 5 } )  

+ {2}( 2{ 1 ’} + (2’ 1 ’} + (2) + (32 1 ’}) 

+ { l}({ 1 ’} + (2 l’} + (2’1)) + {a}{ lz}. (8.7) 
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In stage 3 we obtain first of all the terms 

(4 : 12) +(3  : 2’1) +(3  : 213)+(3 : 15)+2(2 : 1’)+(2 : 2’1’) + (2  : 2) 

+ (2 : a i 3 )  + (1 : 1’) + (1 : 21’) + (1 : 2’1) + (0 : 1’). 

These symbols are all standard in S U Z X S U ~  but must be modified in E, using the 
appropriate rules in table 4. We find in particular that 

(3 : 221) = (2 : 2312) = (2 : 321’) = (1 : 21’) = o 
( l : 2 2 1 ) = - ( 2 : l z )  since h = 1. 

since h = 0 

Thus we finally obtain 

E6 (2 : 12) x (2 : 0) = (4 :  1’) + (3 : 213) + (3 : 1’) + (2 : 2) + (2 : 12) + (1 : 1’) 
(8.8) 

For E, and Ea the best that can be done, in general, in evaluating ( A l ,  A l ,  . . .) x 
in agreement with the result found earlier (Wybourne and Bowick 1977). 

(pl, p 2 , .  . .) is to take 

( 0 0 . .  . 0) I (d, 0 .  . . 0 )  

if A 1  - pl + pz  G 0 

if A - p I  + pz  > d  
6 =  ( A 1 - p l + p Z , O , O .  . . O )  i f O < A l - p l + F ~ c d  (8.9) 

with d = 10 and 21 for E7 and Ea respectively. In the case of the product (21) x (21) 
in Ea for example this gives S = (10000000). In stage 1 (Wybourne and Bowick 1977) 

(8.10) Ea L Sus (2 1) J, {21} + {271} + (2’1’) + {2414} + (2 1‘) + {217} 

and in stage 2 

sus ({21}+{271}+{2215}+{2414} +{21‘} +{217}) x (31) 

={53251}+{527}+{4326}+{532214}+{52413}+{432313} 

+ {425 1 ’} + { 53 1 ’} + (52’ 1 ‘} + 2{ 52 1 ‘} + (43 2 1 ‘} + 2{43 1 ‘} 

+ (42’ 1 3} + 3{42’ 1 ’} + (3 ’2 1 ’} + (3 2’ 1‘) + { 52 1 ’} + { 5 1 ’} 

+{4313}+ (42’1’) + 2{4214} + 2{416} +{3’14} +{32’13} 

+ 2{ 3 2 1 ’} + 2{ 3 1 ’} + (2’ 1 ‘} + { 52) + { 5 1 ’} + (43) + 2{42 1) 

+ 2{4 1 ’} + {3’1} + {322} + 2{32 1 ’} + 2{3 1‘) + (2’1 ’} 

+ (21’) + (4) + 3{3 1) + (2’) + 2{21’} + (1). 

Subtracting 1 from the first component of each of these terms and applying the 
modification rules of table 4 for Ea gives finally 

Ea ( 2 1 ) ~ ( 2 1 )  = (427)+(4216)+(42)+(415)+(412) 

+ (31‘) + (3) + (217) + (21) + (0) (8.11) 

again in agreement with the result found earlier (Wybourne and Bowick 1977). 
It should be stressed that the examples given are merely intended as illustrations. 

Hand calculations would be hard put to extend the tabulations for products in G2 
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(Wybourne 1970), in F4 (Englefield 1981), in E6 and E7 (Wybourne and Bowick 
1977, Englefield 1981) and in E8 (Wybourne 1979). The merit of the technique 
presented here is that known branching multiplicities (Wybourne and Bowick 1977) 
allow for a considerable extension of Kronecker product results using a computer to 
implement the key algorithm we have discussed, including all the modification rules. 

9. Concluding remarks 

In this paper an attempt has been made to present the most efficient Schur function 
method of evaluating the Kronecker product of any two irreducible representations 
of any compact semisimple Lie group. The results, summarised in table 8, are the 
most efficient possible in the sense that each formula expresses the product as a sum 
of positive terms. The only overcounting which occurs is a consequence of the need 
to use modification rules, and this cannot be avoided. The succinct statement of the 
results, along with their derivation, owes a great deal to the symbolic manipulation 
of infinite series of S-functions introduced in 04. In this way a coherent set of 
algorithms suitable for computer implementation has been provided. 

Appendix. Branching from S O ~ ~ + I ,  Sp,, and SOzk to Uk 

Many branching rules for irreps of the classical groups are known (King 1975b). These 
results imply the validity of the following: 

Although the results (A4) and (A5) apply as indicated to the restriction from S 0 2 k  

to u k  they do not supply the desired branching rules for the irreps [A], (or [U; A]+) 
and [A; A]+  of S02k. In order to proceed it is necessary to invoke difference character 
techniques (King et a1 1981). 

A crucial set of identities takes the form 

These are valid for S-function series 2 = L, M, P, Q, V and W, as may be proved 
readily by using (5.2) to evaluate & ; A }  x @; v} in the special cases @; v} = {m} and 
{lm}, together with the definitions (4.5) and the identities (4.7) and ( 4 . 8 ~ ) .  
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The derivation of (A5) then depends only upon the key results 
A .1 & - l / 2 Q  = E 1 / 2 0  SO2k .1 Uk 

SO2k [A; A ]  = A[A/P] 

ALA I = [A; A / Q l .  
The analogous formulae for difference characters take the form 

(A91 S02k 4 uk At! .1 (-l)kE-1/2L = E  1/2z 
S 0 2 k  [A; A ],, = A [ A / M ]  

Af[A] = [A; A/Ly 

and lead inexorably via (A6) with 2 = L, to the result 

(AlOa) 

(AlOb) 

S 0 2 k  .1 uk [A; A],, .1 ( - l ) k  C1I2{E (A/fB) L } = c  E'"{-; A/[B}. ( A l l )  

Combining (A5) and (A1 1)  we arrive, by virtue of (5.196), at the required branching 

[A; A]*  J. &-'"{f; ( A / @ )  * Q * ( - l k } = C  ~"~{m; A/@} (A12) 

5 5 

rules for spinor irreps of S 0 2 k  : 

5 5 
S02k 4 uk 

with Q, defined by ( 4 . 9 ~ ) .  
For the tensor difference characters we can proceed in the same way. The 

fundamental branching rule is found to be 

SO2k .1 uk 0.1 ( - l ) k & - l V = & v  (A13) 

and the difference character identities take the form (King et a1 1981) 

SO2k [U; A]" = O"[A/ w] (A14a) 

(A14b) O"[A] = [a; A /  V],,.  

These can be combined with (A4) and (A6) with 2 = V to produce 

S 0 2 k  .1 uk [U; A]" .1 1 .C1{f; (A/@?) V } = C  e { r c  A/[B}. ( A W  
E 6 

The analogue of (A13) takes the desired form, namely 

S 0 2 k  .1 Uk 0 . 1 & - l X = & Z .  (A 16) 
However, no direct analogue of (A14) exists (King et al 1981) and it is not possible 
to use (A4) as it stands to derive an analogue of (A15). Nonetheless extensive 
manipulations on (A41 do indeed yield the anticipated result: 

S 0 2 k  .1 uk [U; A I  11 (A/5B)X) = c &{m A/@}. (A171 
E 5 

Combining this with (A151 completes the set of branching rules for irreps of S 0 2 k  

with the result 

S 0 2 k  .1 uk [a; A I* 4 C E -'{E (A/SB)X*,-,k} = E{-, A / @ }  (A18) 

with X, defined by (4.96). 
5 E 
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